博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
利用pca分析fmri的生理噪声
阅读量:5311 次
发布时间:2019-06-14

本文共 831 字,大约阅读时间需要 2 分钟。

A kernel machine-based fMRI physiological noise removal method

关于,fmri研究中,生理噪声去除的价值:一、现在随着技术的提升,高场fmri越来越得到应用。高场能够提高图像的信噪比,但是生理噪声却也会提升。所以在高场成像分析中,生理噪声的去除会成为一个不可忽略的因素。二、在静息态fmri中,功能网络的检测依赖于低频的大脑自发信号。这些信号和生理噪声,在频率上,是有着类似的特征。为了提高静息态分析的准确性,去除生理噪声,是必须的操作。

在这篇论文中,作者试图采用pca分析fmri的数据,思想是从时域,或者说频率上将混叠的信号和噪音进行区分。

在进行前期论证中,作者提出了前人两种生理噪声去除方式:基于ica,将信号分解为线性可分的成分,线性独立的成分,完全是从线性代数,矩阵论的角度进行问题的考虑;基于采集时同步机制,是采集与心跳能够同步,但是呼吸就无法过滤了。

这里,采用pca,更准确地说,是非线性pca,基于kernel核函数的选择,将数据投影到高维空间。然后,在高维空间中,对这些特征进行筛选。

这里,作者又提出了新的解决思路,就是利用信息论,互信息的指标衡量一个特征到底是噪声,还是信号。它的思路是这样的,在坐标轴上,定两个点,点一为hrf血液动力学,点二为生理噪声指标,举个例子,这里在采集fmri数据时,同时对心脏的circle进行记录。如果,计算后的互信息离hfr点近,就代表为信号,如果离生理指标近,就代表是生理噪声。

 


 这里,这篇文章最大的缺陷是,需要外部设备监测生理信号,这里主要是心动。

我们能够提出某种方法进行改进,比如利用cca 或者phycaa方法,得到生理特征,然后与这里的kernel-pca进行结合,甚至达到与它相同的结果,就可以算是一个非常重要的创新了。

 

 

转载于:https://www.cnblogs.com/haore147/p/3630711.html

你可能感兴趣的文章
JavaScript介绍
查看>>
yum 命令跳过特定(指定)软件包升级方法
查看>>
创新课程管理系统数据库设计心得
查看>>
Hallo wolrd!
查看>>
16下学期进度条2
查看>>
Could not resolve view with name '***' in servlet with name 'dispatcher'
查看>>
Chapter 3 Phenomenon——12
查看>>
和小哥哥一起刷洛谷(1)
查看>>
遇麻烦,Win7+Ubuntu12.10+Archlinux12.10 +grub
查看>>
SqlBulkCopy大批量导入数据
查看>>
pandas 修改指定列中所有内容
查看>>
「 Luogu P2285 」打鼹鼠
查看>>
lua语言入门之Sublime Text设置lua的Build System
查看>>
vue.js基础
查看>>
电脑的自带图标的显示
查看>>
[转载] redis 的两种持久化方式及原理
查看>>
C++ 删除字符串的两种实现方式
查看>>
ORA-01502: 索引'P_ABCD.PK_WEB_BASE'或这类索引的分区处于不可用状态
查看>>
Java抽象类和接口的比较
查看>>
开发进度一
查看>>